Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nucl Med ; 64(7): 1117-1124, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37268428

RESUMO

Medical internal radiation dosimetry constitutes a fundamental aspect of diagnosis, treatment, optimization, and safety in nuclear medicine. The MIRD committee of the Society of Nuclear Medicine and Medical Imaging developed a new computational tool to support organ-level and suborgan tissue dosimetry (MIRDcalc, version 1). Based on a standard Excel spreadsheet platform, MIRDcalc provides enhanced capabilities to facilitate radiopharmaceutical internal dosimetry. This new computational tool implements the well-established MIRD schema for internal dosimetry. The spreadsheet incorporates a significantly enhanced database comprising details for 333 radionuclides, 12 phantom reference models (International Commission on Radiological Protection), 81 source regions, and 48 target regions, along with the ability to interpolate between models for patient-specific dosimetry. The software also includes sphere models of various composition for tumor dosimetry. MIRDcalc offers several noteworthy features for organ-level dosimetry, including modeling of blood source regions and dynamic source regions defined by user input, integration of tumor tissues, error propagation, quality control checks, batch processing, and report-preparation capabilities. MIRDcalc implements an immediate, easy-to-use single-screen interface. The MIRDcalc software is available for free download (www.mirdsoft.org) and has been approved by the Society of Nuclear Medicine and Molecular Imaging.


Assuntos
Folhetos , Radiometria , Humanos , Radiometria/métodos , Software , Radioisótopos , Dosagem Radioterapêutica
2.
Phys Med Biol ; 68(10)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36996844

RESUMO

Objective. Phantoms of the International Commission on Radiological Protection provide a framework for standardized dosimetry. The modeling of internal blood vessels-essential to tracking circulating blood cells exposed during external beam radiotherapy and to account for radiopharmaceutical decays while still in blood circulation-is, however, limited to the major inter-organ arteries and veins. Intra-organ blood is accounted for only through the assignment of a homogeneous mixture of parenchyma and blood [single-region (SR) organs]. Our goal was to develop explicit dual-region (DR) models of intra-organ blood vasculature of the adult male brain (AMB) and adult female brain (AFB).Approach. A total of 4000 vessels were created amongst 26 vascular trees. The AMB and AFB models were then tetrahedralized for coupling to the PHITS radiation transport code. Absorbed fractions were computed for monoenergetic alpha particles, electrons, positrons, and photons for both decay sites within the blood vessels and for tissues outside these vessels. RadionuclideS-values were computed for 22 and 10 radionuclides commonly employed in radiopharmaceutical therapy and nuclear medicine diagnostic imaging, respectively.Main results. For radionuclide decays, values ofS(brain tissue ← brain blood) assessed in the traditional manner (SR) were higher than those computed using our DR models by factors of 1.92, 1.49, and 1.57 for therapeutic alpha-emitters, beta-emitters, and Auger electron-emitters, respectively in the AFB and by factors of 1.65, 1.37, and 1.42 for these same radionuclide categories in the AMB. Corresponding ratios of SR and DR values ofS(brain tissue ← brain blood) were 1.34 (AFB) and 1.26 (AMB) for four SPECT radionuclides, and were 1.32 (AFB) and 1.24 (AMB) for six common PET radionuclides.Significance. The methodology employed in this study can be explored in other organs of the body for proper accounting of blood self-dose for that fraction of the radiopharmaceutical still in general circulation.


Assuntos
Radiometria , Compostos Radiofarmacêuticos , Doses de Radiação , Radioisótopos , Imagens de Fantasmas , Encéfalo , Método de Monte Carlo
3.
Phys Med Biol ; 65(23): 235015, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-32992308

RESUMO

Accurate estimates of tumor absorbed dose are essential for the evaluation of treatment efficacy in radiopharmaceutical cancer therapy. Although tumor dosimetry via the MIRD schema has been previously investigated, prior studies have been limited to the consideration of soft-tissue tumors. In the present study, specific absorbed fractions (SAFs) for monoenergetic photons, electrons, and alpha particles in tumors of varying compositions were computed using Monte Carlo simulations in MCNPX after which self-irradiation S-values for 22 radionuclides (along with 14 additional alpha-emitter progeny) were generated for tumors of both varying size and tissue composition. The tumors were modeled as spheres with radii ranging from 0.10 cm to 6.0 cm and with compositions varying from 100% soft tissue (ST) to 100% mineral bone (MB). The energies of the photons and electrons were varied on a logarithm energy grid from 10 keV to 10 MeV. The energies of alpha particles were varied along a linear energy grid from 0.5 MeV to 12 MeV. In all cases, a homogenous activity distribution was assumed throughout the tumor volume. Furthermore, to assess the effect of tumor shape, several ellipsoidal tumors of different compositions were modeled and absorbed fractions were computed for monoenergetic electrons and photons. S-values were then generated using detailed decay data from the 2008 MIRD Monograph on Radionuclide Data and Decay Schemes. Our study results demonstrate that a soft-tissue model yields relative errors of 25% and 71% in the absorbed fraction assigned to uniform sources of 1.5 MeV electrons and 100 keV photons, respectively, localized within a 1 cm diameter tumor of MB. The data further show that absorbed fractions for moderate ellipsoids can be well approximated by a spherical shape of equal mass within a relative error of < 8%. S-values for 22 radionuclides (and their daughter progeny) were computed with results demonstrating how relative errors in SAFs could propagate to relative errors in tumor dose estimates as high as 86%. A comprehensive data set of radionuclide S-values by tumor size and tissue composition is provided for application of the MIRD schema for tumor dosimetry in radiopharmaceutical therapy.


Assuntos
Partículas alfa , Elétrons , Método de Monte Carlo , Neoplasias/patologia , Fótons , Cintilografia/métodos , Compostos Radiofarmacêuticos/metabolismo , Simulação por Computador , Humanos , Neoplasias/classificação , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...